Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407237

RESUMEN

SAS-6 (SASS6) is essential for centriole formation in human cells and other organisms but its functions in the mouse are unclear. Here, we report that Sass6-mutant mouse embryos lack centrioles, activate the mitotic surveillance cell death pathway, and arrest at mid-gestation. In contrast, SAS-6 is not required for centriole formation in mouse embryonic stem cells (mESCs), but is essential to maintain centriole architecture. Of note, centrioles appeared after just one day of culture of Sass6-mutant blastocysts, from which mESCs are derived. Conversely, the number of cells with centrosomes is drastically decreased upon the exit from a mESC pluripotent state. At the mechanistic level, the activity of the master kinase in centriole formation, PLK4, associated with increased centriolar and centrosomal protein levels, endow mESCs with the robustness in using a SAS-6-independent centriole-biogenesis pathway. Collectively, our data suggest a differential requirement for mouse SAS-6 in centriole formation or integrity depending on PLK4 activity and centrosome composition.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Embrión de Mamíferos , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo
2.
Genesis ; 62(1): e23532, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37435631

RESUMEN

Ectodermal appendages in mammals, such as teeth, mammary glands, sweat glands and hair follicles, are generated during embryogenesis through a series of mesenchymal-epithelial interactions. Canonical Wnt signaling and its inhibitors are implicated in the early steps of ectodermal appendage development and patterning. To study the activation dynamics of the Wnt target and inhibitor Dickkopf4 (Dkk4) in ectodermal appendages, we used CRSIPR/Cas9 to generate a Dkk4-Cre knock-in mouse (Mus musculus) line, where the Cre recombinase cDNA replaces the expression of endogenous Dkk4. Using Cre reporters, the Dkk4-Cre activity was evident at the prospective sites of ectodermal appendages, overlapping with the Dkk4 mRNA expression. Unexpectedly, a predominantly mesenchymal cell population in the embryo posterior also showed Dkk4-Cre activity. Lineage-tracing suggested that these cells are likely derived from a few Dkk4-Cre-expressing cells in the epiblast at early gastrulation. Finally, our analyses of Dkk4-Cre-expressing cells in developing hair follicle epithelial placodes revealed intra- and inter-placodal cellular heterogeneity, supporting emerging data on the positional and transcriptional cellular variability in placodes. Collectively, we propose the new Dkk4-Cre knock-in mouse line as a suitable model to study Wnt and DKK4 inhibitor dynamics in early mouse development and ectodermal appendage morphogenesis.


Asunto(s)
Folículo Piloso , Vía de Señalización Wnt , Ratones , Animales , Estudios Prospectivos , Folículo Piloso/metabolismo , Ectodermo/metabolismo , Morfogénesis , Mamíferos
3.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38086550

RESUMEN

Centrosomes are organelles that nucleate microtubules via the activity of gamma-tubulin ring complexes (γ-TuRC). In the developing brain, centrosome integrity is central to the progression of the neural progenitor cell cycle, and its loss leads to microcephaly. We show that NPCs maintain centrosome integrity via the endocytic adaptor protein complex-2 (AP-2). NPCs lacking AP-2 exhibit defects in centrosome formation and mitotic progression, accompanied by DNA damage and accumulation of p53. This function of AP-2 in regulating the proliferative capacity of NPCs is independent of its role in clathrin-mediated endocytosis and is coupled to its association with the GCP2, GCP3, and GCP4 components of γ-TuRC. We find that AP-2 maintains γ-TuRC organization and regulates centrosome function at the level of MT nucleation. Taken together, our data reveal a novel, noncanonical function of AP-2 in regulating the proliferative capacity of NPCs and open new avenues for the identification of novel therapeutic strategies for the treatment of neurodevelopmental and neurodegenerative disorders with AP-2 complex dysfunction.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células HeLa , Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos
4.
Sci Adv ; 9(13): eade1792, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989351

RESUMEN

The blueprints of developing organs are preset at the early stages of embryogenesis. Transcriptional and epigenetic mechanisms are proposed to preset developmental trajectories. However, we reveal that the competence for the future cardiac fate of human embryonic stem cells (hESCs) is preset in pluripotency by a specialized mRNA translation circuit controlled by RBPMS. RBPMS is recruited to active ribosomes in hESCs to control the translation of essential factors needed for cardiac commitment program, including Wingless/Integrated (WNT) signaling. Consequently, RBPMS loss specifically and severely impedes cardiac mesoderm specification, leading to patterning and morphogenetic defects in human cardiac organoids. Mechanistically, RBPMS specializes mRNA translation, selectively via 3'UTR binding and globally by promoting translation initiation. Accordingly, RBPMS loss causes translation initiation defects highlighted by aberrant retention of the EIF3 complex and depletion of EIF5A from mRNAs, thereby abrogating ribosome recruitment. We demonstrate how future fate trajectories are programmed during embryogenesis by specialized mRNA translation.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias Humanas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Corazón , Transducción de Señal , Proteínas de Unión al ARN/metabolismo
5.
Nat Commun ; 12(1): 4344, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272393

RESUMEN

Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.


Asunto(s)
Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Embrión de Pollo , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Islas de CpG , Células Madre Embrionarias/efectos de los fármacos , Epigénesis Genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estratos Germinativos/metabolismo , Homocigoto , Ratones , Filogenia , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/genética
6.
Nat Commun ; 12(1): 3227, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050161

RESUMEN

The development of complex stratified epithelial barriers in mammals is initiated from single-layered epithelia. How stratification is initiated and fueled are still open questions. Previous studies on skin epidermal stratification suggested a central role for perpendicular/asymmetric cell division orientation of the basal keratinocyte progenitors. Here, we use centrosomes, that organize the mitotic spindle, to test whether cell division orientation and stratification are linked. Genetically ablating centrosomes from the developing epidermis leads to the activation of the p53-, 53BP1- and USP28-dependent mitotic surveillance pathway causing a thinner epidermis and hair follicle arrest. The centrosome/p53-double mutant keratinocyte progenitors significantly alter their division orientation in the later stages without majorly affecting epidermal differentiation. Together with time-lapse imaging and tissue growth dynamics measurements, the data suggest that the first and major phase of epidermal development is boosted by high proliferation rates in both basal and suprabasally-committed keratinocytes as well as cell delamination, whereas the second phase maybe uncoupled from the division orientation of the basal progenitors. The data provide insights for tissue homeostasis and hyperproliferative diseases that may recapitulate developmental programs.


Asunto(s)
Epidermis/crecimiento & desarrollo , Queratinocitos/fisiología , Fenómenos Fisiológicos de la Piel , Adolescente , Adulto , Anciano , Animales , División Celular Asimétrica , Diferenciación Celular , Proliferación Celular , Centrosoma/metabolismo , Niño , Preescolar , Embrión de Mamíferos , Epidermis/diagnóstico por imagen , Femenino , Folículo Piloso/embriología , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Huso Acromático/metabolismo , Imagen de Lapso de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Adulto Joven
7.
EMBO Rep ; 22(2): e51127, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33410253

RESUMEN

Centrosomes, composed of two centrioles and pericentriolar material, organize mitotic spindles during cell division and template cilia during interphase. The first few divisions during mouse development occur without centrioles, which form around embryonic day (E) 3. However, disruption of centriole biogenesis in Sas-4 null mice leads to embryonic arrest around E9. Centriole loss in Sas-4-/- embryos causes prolonged mitosis and p53-dependent cell death. Studies in vitro discovered a similar USP28-, 53BP1-, and p53-dependent mitotic surveillance pathway that leads to cell cycle arrest. In this study, we show that an analogous pathway is conserved in vivo where 53BP1 and USP28 are upstream of p53 in Sas-4-/- embryos. The data indicate that the pathway is established around E7 of development, four days after the centrioles appear. Our data suggest that the newly formed centrioles gradually mature to participate in mitosis and cilia formation around the beginning of gastrulation, coinciding with the activation of mitotic surveillance pathway upon centriole loss.


Asunto(s)
Centriolos , Centrosoma , Animales , Interfase , Ratones , Mitosis/genética , Huso Acromático
8.
EMBO J ; 40(1): e106118, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33226141

RESUMEN

Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53-mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53-mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non-centrosomal protein SMC5 is also TP53-dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.


Asunto(s)
Centrosoma/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Mitosis/genética , Proteína p53 Supresora de Tumor/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina Tiolesterasa/genética , Animales , Apoptosis/genética , Encéfalo/patología , Muerte Celular/genética , Proliferación Celular/genética , Células Cultivadas , Ratones , Ratones Noqueados , Mutación/genética , Transducción de Señal/genética
9.
Proc Natl Acad Sci U S A ; 117(8): 4310-4319, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32041868

RESUMEN

Immunological synapse formation between cytotoxic T lymphocytes (CTLs) and the target cells they aim to destroy is accompanied by reorientation of the CTL centrosome to a position beneath the synaptic membrane. Centrosome polarization is thought to enhance the potency and specificity of killing by driving lytic granule fusion at the synapse and thereby the release of perforin and granzymes toward the target cell. To test this model, we employed a genetic strategy to delete centrioles, the core structural components of the centrosome. Centriole deletion altered microtubule architecture as expected but surprisingly had no effect on lytic granule polarization and directional secretion. Nevertheless, CTLs lacking centrioles did display substantially reduced killing potential, which was associated with defects in both lytic granule biogenesis and synaptic actin remodeling. These results reveal an unexpected role for the intact centrosome in controlling the capacity but not the specificity of cytotoxic killing.


Asunto(s)
Centriolos/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Centrosoma/inmunología , Pruebas Inmunológicas de Citotoxicidad , Ratones Endogámicos C57BL , Microtúbulos/genética , Microtúbulos/inmunología , Especificidad de la Especie
10.
J Vis Exp ; (141)2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30474633

RESUMEN

The post-implantation mouse embryo undergoes major shape changes after the initiation of gastrulation and morphogenesis. A hallmark of morphogenesis is the formation of the transient organizers, the node and notochordal plate, from cells that have passed through the primitive streak. The proper formation of these signaling centers is essential for the development of the body plan and techniques to visualize them are of high interest to mouse developmental biologists. The node and notochordal plate lie on the ventral surface of gastrulating mouse embryos around embryonic day (E) 7.5 of development. The node is a cup-shaped structure whose cells possess a single slender cilium each. The proper subcellular localization and rotation of the cilia in the node pit determines left-right asymmetry. The notochordal plate cells also possess single cilia albeit shorter than those of the node cells. The notochordal plate forms the notochord which acts as an important signaling organizer for somitogenesis and neural patterning. Because the cells of the node and notochordal plate are transiently present on the surface and possess cilia, they can be visualized using scanning electron microscopy (SEM). Among other techniques used to visualize these structures at the cellular level is whole mount immunofluorescence (WMIF) using the antibodies against the proteins that are highly expressed in the node and notochordal plate. In this report, we describe our optimized protocols to perform SEM and WMIF of the node and notochordal plate in developing mouse embryos to help in the assessment of tissue shape and cellular organization in wild-type and gastrulation mutant embryos.


Asunto(s)
Desarrollo Embrionario/genética , Técnica del Anticuerpo Fluorescente/métodos , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Microscopía Electrónica de Rastreo/métodos , Notocorda/crecimiento & desarrollo , Animales , Ratones
11.
Proc Natl Acad Sci U S A ; 114(51): E10928-E10936, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203676

RESUMEN

Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 (Strip1) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1-null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Desarrollo Embrionario , Mesodermo/metabolismo , Complejos Multiproteicos/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/genética , Movimiento Celular , Desarrollo Embrionario/genética , Mesodermo/citología , Mesodermo/embriología , Ratones , Morfogénesis/genética , Mutación , Fenotipo
12.
Nat Commun ; 8(1): 1456, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29129916

RESUMEN

While the transcriptional network of human embryonic stem cells (hESCs) has been extensively studied, relatively little is known about how post-transcriptional modulations determine hESC function. RNA-binding proteins play central roles in RNA regulation, including translation and turnover. Here we show that the RNA-binding protein CSDE1 (cold shock domain containing E1) is highly expressed in hESCs to maintain their undifferentiated state and prevent default neural fate. Notably, loss of CSDE1 accelerates neural differentiation and potentiates neurogenesis. Conversely, ectopic expression of CSDE1 impairs neural differentiation. We find that CSDE1 post-transcriptionally modulates core components of multiple regulatory nodes of hESC identity, neuroectoderm commitment and neurogenesis. Among these key pro-neural/neuronal factors, CSDE1 binds fatty acid binding protein 7 (FABP7) and vimentin (VIM) mRNAs, as well as transcripts involved in neuron projection development regulating their stability and translation. Thus, our results uncover CSDE1 as a central post-transcriptional regulator of hESC identity and neurogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína de Unión a los Ácidos Grasos 7/metabolismo , Células Madre Embrionarias Humanas/citología , Placa Neural/embriología , Neurogénesis/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Vimentina/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteína de Unión a los Ácidos Grasos 7/genética , Regulación de la Expresión Génica/genética , Humanos , Ratones , Sistema Nervioso/embriología , Placa Neural/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas Supresoras de Tumor/genética , Vimentina/genética
13.
Cell Stem Cell ; 20(5): 689-705.e9, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28285903

RESUMEN

Poised enhancers marked by H3K27me3 in pluripotent stem cells have been implicated in the establishment of somatic expression programs during embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Using CRISPR/Cas9 technology to engineer precise genetic deletions, we demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Interestingly, circularized chromosome conformation capture sequencing (4C-seq) shows that poised enhancers already establish physical interactions with their target genes in ESCs in a polycomb repressive complex 2 (PRC2)-dependent manner. Loss of PRC2 does not activate poised enhancers or induce their putative target genes in undifferentiated ESCs; however, loss of PRC2 in differentiating ESCs severely and specifically compromises the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates an unexpected function for polycomb proteins in facilitating neural induction by endowing major anterior neural loci with a permissive regulatory topology.


Asunto(s)
Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Técnica del Anticuerpo Fluorescente , Ratones , Complejo Represivo Polycomb 2/genética , Reacción en Cadena de la Polimerasa
15.
Nat Neurosci ; 17(11): 1528-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25282615

RESUMEN

Neuronal production in the mammalian cortex depends on extensive mitoses of radial glial progenitors (RGPs) residing in the ventricular zone (VZ). We examined the function of centrioles in RGPs during cortical neurogenesis in mice by conditional removal of SAS-4, a protein that is required for centriole biogenesis. SAS-4 deletion led to a progressive loss of centrioles, accompanied by RGP detachment from the VZ. Delocalized RGPs did not become outer subventricular zone RGPs (oRGs). Although they remained proliferative, ectopic RGPs, as well as those in the VZ, with a centrosomal deficit exhibited prolonged mitosis, p53 upregulation and apoptosis, resulting in neuronal loss and microcephaly. Simultaneous removal of p53 fully rescued RGP death and microcephaly, but not RGP delocalization and randomized mitotic spindle orientation. Our findings define the functions of centrioles in anchoring RGPs in the VZ and ensuring their efficient mitoses, and reveal the robust adaptability of RGPs in the developing cortex.


Asunto(s)
Corteza Cerebral/citología , Neurogénesis/fisiología , Neuronas/citología , Animales , Apoptosis/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Centriolos/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitosis/genética , Neurogénesis/genética
16.
Proc Natl Acad Sci U S A ; 111(15): E1491-500, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706806

RESUMEN

Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4(-/-) mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4(-/-) embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4(-/-) p53(-/-) double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4(-/-) mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.


Asunto(s)
Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Centriolos/patología , Mitosis/fisiología , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/fisiología , Análisis de Varianza , Animales , Western Blotting , Proteínas de Ciclo Celular/genética , Cruzamientos Genéticos , Técnica del Anticuerpo Fluorescente , Genotipo , Hibridación in Situ , Hibridación Fluorescente in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos , Proteína p53 Supresora de Tumor/genética
17.
Differentiation ; 78(5): 292-300, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19683850

RESUMEN

The hair fiber is made of specialized keratinocytes, known as trichocytes, that primarily express hair keratins, which are cemented by a multitude of keratin-associated proteins (KAPs). The hair keratins form the intermediate filament cytoskeleton of the trichocytes, which are linked to abundant cell-cell adhesion junctions, called desmosomes. Desmoglein 4 (DSG4) is the major desmosomal cadherin expressed in the hair shaft cortex where the hair keratins are highly expressed. In humans, mutations affecting either the hair keratins or DSG4 lead to beaded hair phenotypes with features of monilethrix. In this work, we postulated that the regulatory pathways governing the expression of hair shaft components, such as hair keratins and DSG4, are shared. Therefore, we studied the transcriptional regulation of DSG4 by transcription factors/pathways that are known regulators of hair keratin or KAP expression. We show that HOXC13, LEF1 and FOXN1 repress DSG4 transcription and provide in vitro and in vivo evidence correlating the Notch pathway with the activation and/or maintenance of DSG4 expression in the hair follicle.


Asunto(s)
Diferenciación Celular , Desmogleínas/metabolismo , Cabello/anatomía & histología , Cabello/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Desmogleínas/deficiencia , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Ratas , Receptores Notch/metabolismo , Transducción de Señal , Transcripción Genética
18.
Gene Expr Patterns ; 9(6): 454-60, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19427408

RESUMEN

Syndecan-1 is a cell-surface heparan-sulphate proteoglycan that is involved in growth factor regulation, cell adhesion, proliferation, differentiation, blood coagulation, lipid metabolism, as well as tumour formation. In this study, investigation of discrete LCM captured dermal cells by semi-quantitative RT-PCR revealed Syndecan-1 mRNA transcripts were expressed only in the dermal condensation (DC) within this skin compartment during murine pelage hair follicle (HF) morphogenesis. Further immunofluorescence studies showed that, during early skin development, Syndecan-1 was expressed in the epidermis while being absent from the mesenchyme. As HF morphogenesis began ( approximately E14.5) Syndecan-1 expression was lost from the epithelial compartment of the HF and activated in HF mesenchymal cells. This Syndecan-1 expression profile was consistent between different hair follicle types including primary and secondary pelage, vibrissa, and tail hair follicles. Furthermore we show by using gene targeted mice lacking Syndecan-1 expression that Syndecan-1 is not required for follicle initiation and development.

19.
Development ; 136(13): 2153-64, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19474150

RESUMEN

A key initial event in hair follicle morphogenesis is the localised thickening of the skin epithelium to form a placode, partitioning future hair follicle epithelium from interfollicular epidermis. Although many developmental signalling pathways are implicated in follicle morphogenesis, the role of epidermal growth factor (EGF) and keratinocyte growth factor (KGF, also known as FGF7) receptors are not defined. EGF receptor (EGFR) ligands have previously been shown to inhibit developing hair follicles; however, the underlying mechanisms have not been characterised. Here we show that receptors for EGF and KGF undergo marked downregulation in hair follicle placodes from multiple body sites, whereas the expression of endogenous ligands persist throughout hair follicle initiation. Using embryonic skin organ culture, we show that when skin from the sites of primary pelage and whisker follicle development is exposed to increased levels of two ectopic EGFR ligands (HBEGF and amphiregulin) and the FGFR2(IIIb) receptor ligand KGF, follicle formation is inhibited in a time- and dose-dependent manner. We then used downstream molecular markers and microarray profiling to provide evidence that, in response to KGF and EGF signalling, epidermal differentiation is promoted at the expense of hair follicle fate. We propose that hair follicle initiation in placodes requires downregulation of the two pathways in question, both of which are crucial for the ongoing development of the interfollicular epidermis. We have also uncovered a previously unrecognised role for KGF signalling in the formation of hair follicles in the mouse.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Epidermis , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Folículo Piloso/embriología , Transducción de Señal/fisiología , Piel , Anfirregulina , Animales , Cadherinas/metabolismo , Diferenciación Celular/fisiología , Familia de Proteínas EGF , Inhibidores Enzimáticos/metabolismo , Células Epidérmicas , Factor de Crecimiento Epidérmico/genética , Epidermis/embriología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/genética , Glicoproteínas/metabolismo , Folículo Piloso/citología , Folículo Piloso/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina , Receptores de Hialuranos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis/fisiología , Proteínas Oncogénicas/metabolismo , Quinazolinas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Piel/anatomía & histología , Piel/embriología , Sindecano-1/metabolismo , Técnicas de Cultivo de Tejidos , Transactivadores/metabolismo , Tirfostinos/metabolismo , Vibrisas/anatomía & histología , Vibrisas/embriología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína con Dedos de Zinc GLI1 , beta Catenina/metabolismo
20.
Dev Biol ; 322(1): 156-66, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18692037

RESUMEN

We have previously shown that keratinocyte-specific deletion of Smad4, a TGFbeta/Activin/BMP signaling mediator, results in a progressive alopecia. To further assess the molecular mechanisms of Smad4 loss-mediated alopecia, we examined expression levels of key molecules associated with hair follicle differentiation in Smad4-deleted skin. Among them, Desmoglein 4 (Dsg4) was down-regulated in Smad4-deleted skin prior to the onset of hair follicle abnormalities with gradual depletion coinciding with hair follicle degeneration. Chromatin immunoprecipitation (ChIP) assay showed that Smad4, together with the BMP mediators Smad1 and Smad5, but not the TGFbeta/Activin mediators Smad2 or Smad3, bound to the Smad Binding Element (SBE) of the Dsg4 promoter. A Dsg4 reporter assay revealed that Smad4 was required for the maximal transactivation of Dsg4 in cooperation with Smad1 and Smad5. Mutating the SBE of the Dsg4 promoter abrogated Smad4 transactivation of Dsg4. Furthermore, BMP ligands, but not ligands of TGFbeta and Activin, induced endogenous Dsg4 expression. Our data demonstrate that in the presence of Smad4, BMP signaling participated in transcriptional regulation of Dsg4. Thus, Smad4 loss-associated Dsg4 depletion contributed, at least in part, to hair follicles degeneration in Smad4 deficient skin.


Asunto(s)
Alopecia/genética , Desmogleínas/metabolismo , Folículo Piloso/metabolismo , Proteína Smad4/deficiencia , Alopecia/metabolismo , Alopecia/patología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Desmogleínas/genética , Regulación hacia Abajo/genética , Folículo Piloso/patología , Queratinocitos/metabolismo , Queratinocitos/patología , Ligandos , Ratones , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Piel/patología , Proteína Smad1/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Smad5/metabolismo , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...